Tag Archives: screw linear

China high quality Famous Brand Stainless Steel Linear Axle Ball Screw Shaft for Bearing axle carrier

Product Description

Company Profile

 

UP GOLD Automation Technology Co., LTD., independent brand, NYZ and UP. The main products are linear CZPT rail, slider, ball screw, linear optical shaft, linear bearing, machine tool spindle special P4 high precision bearings and accessories, with advanced production equipment and testing instruments to ensure the accuracy of each product. Precision products will provide higher value to the equipment. The company promises to sell each product, warranty period of 24 months, 24 hours after-sales service. Provide professional OEM cooperation model. At the same time, the company agents international first-line brands HIWIN, TBI, NSK,THK. Sufficient resources to ensure every customer needs.

Our Advantages

*Two-year warranty, replace instead of repair.
*12 Months Warranty
*Fast Delivery
*24 hours on line service
*Professional Team
 

Product Description

Linear shafts are metal rods made of C1045 Induction Hardened and Hard Chrome plated.The rods bear rigorous tactics like pilling, straightening, hardening, grinding, polishing, tough chrome plating and ending underneath the supervision of skilled engineers. Different from the Hard Chrome Plated Piston Rods, the floor hardness of the Induction Hardened Chrome Rods is excessive up to HRC58-62 by way of high-frequency induction harden technique. Linear shafts are normally used as information rail or slide rail matching with Linearing Bearings due to the fact of the floor excessive durability, abrasion resistance, longer working lifestyles and dimensional accuracy.

Product Name
 
High Precision NYZ Brand Linear Optical Shaft
Model Number
 
SFC10
Size
 
10m
Feature
 

1.High performance

2.High rigidity

3.High power
4.Durability

  5.Easy maintenance

Precision
 
High Precision
 
Material
 
Chrome Steel GCr15
 
Delivery Time
 
1) 1-5 Workdays for Samples or in Stock
2) 10-30 Working Days for Ordering
 

 

Customer Comment

Packaging & Shipping

Bearing packaging mode
01 Industrial packaging
Plastic tube + Carton + Pallet
02 Commercial packaging
Plastic bag + Kraft paper+ Carton+ Pallet
03 Original packing+ pallet

Mode Of Transportation

Air freight
Less than 45 KGS,we will send by express.
(Door to Door,Convenient)

Land transportation
Between 45- 150 KGS, we will send by air transport.
(Fastest and safest, but expensive)

Railway
More than 150 KGS,we will send by sea.

Shipping
According to the requirement of customer.

FAQ

Q: What is the producing process?
A: Production process including raw material cutting, machine processing,grinding, accessories cleaning, assemble, cleaning, oil coating,cover pressing, testing, package.
Q: How to control the products quality?
A: Combining advanced equipment and strict management, we provide high standard and quality bearings for our customers all over the world.
Q: What is the transportation?
A: If small quantity, we suggest to send by express, such as DHL, UPS,TNT FEDEX. If large amount, by air or sea shipping.
Q: How about the shipping charge?
A: We will be free of domestic shipping charge from your freight forwarder in China.
Q: Can you provide OEM service?
A: Yes, we provide OEM service. Which means size, quantity, design,packing solution, etc will depend on your requests; and your logo will be customized on our products.
Q: Could you tell me the delivery time of your goods?
A: Generally it is 3-5 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to the quantity.
Q: What about the packaging of your products?
A: Normally we use standard commercial package, we also have our own brand packing or customized package as per customers’ requests.
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

axle shaft

What are the eco-friendly or sustainable aspects of axle shaft production?

Axle shaft production can incorporate several eco-friendly or sustainable practices that aim to minimize environmental impact and promote sustainability throughout the manufacturing process. Here’s a detailed explanation of the eco-friendly and sustainable aspects of axle shaft production:

  • Material Selection: One of the primary considerations for eco-friendly axle shaft production is the selection of materials. Opting for sustainable materials, such as recycled steel or lightweight alloys, reduces the environmental footprint associated with raw material extraction and processing. Using recycled materials helps conserve natural resources and reduces energy consumption and greenhouse gas emissions compared to using virgin materials.
  • Energy Efficiency: Promoting energy efficiency in axle shaft production is another eco-friendly aspect. Implementing energy-saving technologies, such as efficient manufacturing processes, optimized equipment, and smart controls, helps minimize energy consumption during production. Utilizing renewable energy sources, such as solar or wind power, further reduces greenhouse gas emissions and reliance on fossil fuels.
  • Waste Reduction and Recycling: Axle shaft production can incorporate waste reduction and recycling practices to minimize the amount of waste generated and promote a circular economy. Implementing measures like effective waste management systems, recycling programs, and responsible disposal of hazardous materials ensures that waste is minimized, and valuable resources are recovered and reused whenever possible.
  • Water Conservation: Sustainable axle shaft production also includes measures to conserve water resources. Implementing water-efficient technologies, recycling and treating water used in manufacturing processes, and implementing water management strategies help minimize water consumption and reduce the strain on freshwater resources.
  • Emissions Reduction: Axle shaft production can focus on reducing emissions to minimize its environmental impact. Implementing emission control technologies, such as installing pollution control devices or adopting cleaner manufacturing processes, helps reduce air pollutants released during production. Additionally, monitoring and optimizing transportation logistics can help minimize carbon emissions associated with the transportation of raw materials and finished axle shafts.
  • Life Cycle Assessment: Conducting a life cycle assessment (LCA) of axle shaft production allows for a comprehensive evaluation of the environmental impact at each stage, from raw material extraction to end-of-life disposal. LCA helps identify areas where improvements can be made, enabling manufacturers to make informed decisions and implement sustainable practices throughout the entire life cycle of the axle shafts.
  • Supply Chain Sustainability: Promoting sustainability in axle shaft production involves considering the sustainability practices of suppliers and fostering sustainable partnerships throughout the supply chain. Encouraging suppliers to adhere to environmental standards, promoting responsible sourcing of raw materials, and ensuring ethical labor practices contribute to a more sustainable overall production process.

It’s important to note that specific eco-friendly and sustainable practices may vary among manufacturers and depend on factors such as the size of the production facility, available resources, and technological advancements. However, by incorporating these practices, axle shaft production can reduce its environmental impact, conserve resources, minimize waste, and contribute to a more sustainable automotive industry.

In summary, the eco-friendly and sustainable aspects of axle shaft production include material selection using recycled or sustainable materials, energy efficiency measures, waste reduction and recycling practices, water conservation efforts, emissions reduction strategies, life cycle assessment, and promoting supply chain sustainability. By adopting these practices, axle shaft manufacturers can contribute to a greener and more sustainable future.

axle shaft

How do axle shafts contribute to a vehicle’s stability and handling?

Axle shafts play a crucial role in contributing to a vehicle’s stability and handling characteristics. They are integral components of the suspension and drivetrain systems, affecting how the vehicle distributes power, maintains traction, and responds to steering inputs. Here’s a detailed explanation of how axle shafts contribute to a vehicle’s stability and handling:

  • Power Distribution: Axle shafts transmit power from the drivetrain to the wheels, allowing the vehicle to move forward or backward. The distribution of power between the wheels is essential for maintaining stability and preventing wheel slippage. By transferring torque evenly to the wheels, axle shafts help optimize traction and prevent excessive power loss, ensuring that the vehicle stays stable and controlled during acceleration or deceleration.
  • Traction Control: Axle shafts, particularly those equipped with differential mechanisms, help maintain traction by allowing the wheels to rotate at different speeds when necessary. This feature is especially important during turns or when driving on uneven surfaces. The differential compensates for differences in wheel rotation, enabling the vehicle to maintain stability and grip by preventing wheel spin or loss of control.
  • Suspension Geometry: Axle shafts are integrated into the suspension system, connecting the wheels to the differential or transaxle. The positioning and design of axle shafts influence the suspension geometry, including factors like camber, caster, and toe. Proper suspension geometry is crucial for stability, predictable handling, and optimal tire contact with the road surface. Well-engineered axle shafts ensure that the suspension components work harmoniously to maintain stability and enhance handling characteristics.
  • Steering Response: In vehicles with front-wheel drive or all-wheel drive configurations, axle shafts are responsible for transmitting power to the front wheels while also allowing for steering inputs. This design affects the vehicle’s steering response and handling. High-quality axle shafts with minimal play or backlash contribute to precise steering control, allowing the driver to make accurate and predictable maneuvers. Axle shafts that provide a direct and responsive connection between the drivetrain and front wheels enhance the overall handling and stability of the vehicle.
  • Weight Distribution: The weight distribution of a vehicle affects its stability and handling characteristics. Axle shafts, particularly those in rear-wheel drive vehicles, support the weight of the vehicle’s rear end. By properly distributing the weight across the axles, axle shafts help maintain a balanced and stable platform. This balanced weight distribution enhances the vehicle’s overall stability and allows for better handling during cornering, reducing the risk of oversteer or understeer.
  • Impact on Suspension Tuning: Axle shafts can have an impact on the tuning and performance of the suspension system. Upgrading to high-performance axle shafts, such as those made from stronger materials or featuring improved designs, can enhance the overall rigidity and responsiveness of the suspension. This, in turn, improves the vehicle’s stability and handling, allowing for more precise control during aggressive driving or challenging road conditions.

It’s important to note that while axle shafts contribute significantly to a vehicle’s stability and handling, they work in conjunction with other components such as suspension, tires, steering system, and chassis design. The overall performance and characteristics of a vehicle’s stability and handling are the result of a complex interaction between these components.

In summary, axle shafts contribute to a vehicle’s stability and handling by ensuring proper power distribution, maintaining traction control, influencing suspension geometry, providing responsive steering, contributing to balanced weight distribution, and impacting suspension tuning. High-quality axle shafts that are properly engineered and integrated into the vehicle’s systems enhance stability, improve handling characteristics, and allow for a more controlled and enjoyable driving experience.

axle shaft

Are there different axle shaft designs for rear-wheel drive and front-wheel drive vehicles?

Yes, rear-wheel drive (RWD) and front-wheel drive (FWD) vehicles typically employ different axle shaft designs to accommodate their respective drivetrain configurations. The axle shafts in RWD and FWD vehicles differ in their construction, orientation, and connection to the wheels. Here’s a detailed explanation of the axle shaft designs used in RWD and FWD vehicles:

Rear-Wheel Drive (RWD) Vehicles:

In RWD vehicles, the engine’s power is transmitted to the rear wheels through the drivetrain components. The axle shaft design in RWD vehicles is commonly referred to as a solid axle or full-floating axle. Here are the key characteristics of RWD axle shafts:

  • Rigid Shaft: RWD axle shafts are typically solid and rigid, connecting the differential directly to each rear wheel. They are designed to handle high torque loads and provide robustness, making them suitable for heavy-duty applications.
  • Single Connection: Each rear wheel has its own dedicated axle shaft, which connects directly to the wheel hub. The axle shaft transfers power to the wheel, enabling it to rotate.
  • Support and Power Transfer: RWD axle shafts support the weight of the vehicle and transmit torque from the differential to the wheels. They facilitate smooth power delivery and enable the rear wheels to propel the vehicle forward or backward.
  • Less Articulation: Since RWD vehicles typically have a solid rear axle, the axle shafts have limited articulation compared to FWD vehicles. This design simplifies the construction but may result in reduced suspension flexibility and a harsher ride quality.

Front-Wheel Drive (FWD) Vehicles:

In FWD vehicles, the engine’s power is transmitted to the front wheels through the drivetrain components. FWD axle shafts are commonly known as half shafts or CV axles (constant velocity axles). Here are the main characteristics of FWD axle shafts:

  • Compact and Lightweight: FWD axle shafts are typically lighter and more compact than RWD axle shafts. They are designed to accommodate the space limitations in the front-wheel-drive layout.
  • Constant Velocity (CV) Joints: FWD axle shafts incorporate constant velocity (CV) joints, which allow for flexibility and rotation at various angles. CV joints compensate for the changing length and angle of the axle shafts during suspension movement and steering.
  • Transverse Orientation: FWD axle shafts are positioned transversely across the vehicle, connecting the differential or transaxle to the front wheels. This orientation allows for efficient power transfer and space utilization in FWD vehicles.
  • Support and Power Transfer: FWD axle shafts support the weight of the vehicle and transmit torque from the differential or transaxle to the front wheels. They enable the front wheels to rotate and provide the driving force for vehicle movement.
  • Increased Articulation: FWD axle shafts have greater articulation capabilities due to the need to accommodate suspension movement and steering angles. The CV joints allow the axle shafts to flex and rotate, ensuring smooth power delivery even when the wheels are turned or the suspension is compressed.

These axle shaft designs in RWD and FWD vehicles are tailored to the specific requirements and configurations of each drivetrain layout. They optimize power transmission, support the wheels, and ensure efficient operation based on the unique characteristics of rear-wheel drive and front-wheel drive systems.

China high quality Famous Brand Stainless Steel Linear Axle Ball Screw Shaft for Bearing   axle carrierChina high quality Famous Brand Stainless Steel Linear Axle Ball Screw Shaft for Bearing   axle carrier
editor by CX 2024-02-14

China Best Worm Gear Machine Screw Linear Actuators, Mechanical Screw Actuators Lifting Shaft Manufacturer drive shaft parts

Product Description

We are expert greatest worm gear equipment screw linear actuators, mechanical screw actuators lifting shaft producers and suppliers from China. All CZPT worm equipment device screw linear actuators, mechanical screw actuators lifting shaft are utilized to pushing, pulling, utilize stress as linear actuators, and provide positive mechanical action, specific positioning, and uniform lifting speeds.
 

JTC Series Cubic Screw Jack

Jacton JTC series cubic screw jack features: a compact and adaptable cubic housing, with substantial dependability and functionality are guaranteed with the identical precision worm and worm gear set and CZPT screw. Load ability from 2.5 kN to 56567X3, registered Funds 500000CNY) is a leading manufacturer and supplier in China for screw jacks (mechanical actuators), bevel gearboxes, lifting programs, linear actuators, gearmotors and pace reducers, and other individuals linear motion and energy transmission merchandise. We are Alibaba, Produced-In-China and SGS (Serial NO.: QIP-ASI192186) audited maker and provider. We also have a rigid quality system, with senior engineers, knowledgeable skilled employees and practiced revenue teams, we persistently give the substantial good quality equipments to fulfill the buyers electro-mechanical actuation, lifting and positioning needs. CZPT Industry ensures quality, trustworthiness, overall performance and price for today’s demanding industrial programs. 
Site 1: http://screw-jacks
Internet site 2:

US $55-2,555
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Alloy Steel, Bronze Worm Gear
Installation: Upright Type, Inverted Type
Layout: Worm and Worm Screw Right Angle Drive
Gear Shape: Worm Gear
Step: Single-Step

###

Customization:

###

2.5 kN Cubic Mini Screw Jack (0.25T)
1. Maximum static load capacity 2.5kN
2. Lifting screw Tr 14×4
3. Gear ratios 5:1, 20:1
4. Custom made travel length
5. Translating, rotating screw design
6. Multiple mini screw jack systems
7. Hand wheel operated, motor driven

 
5 kN Cubic Small Screw Jack (0.5T)
1. Maximum static load capacity 5kN
2. Lifting screw Tr 18×4
3. Gear ratios 5:1, 20:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
10 kN Cubic Screw Jack (1T)
1. Maximum static load capacity 10kN
2. Lifting screw Tr 20×4
3. Gear ratios 5:1, 20:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
25 kN Cubic Screw Jack (2.5T)
1. Maximum static load capacity 25kN
2. Lifting screw Tr 30×6
3. Gear ratios 6:1, 24:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
6. Multiple units screw jack systems
7. Hand wheel operated, motor driven
50 kN Cubic Screw Jack (5T)
1. Maximum static load capacity 50kN
2. Lifting screw Tr 40×7
3. Gear ratios 7:1, 28:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
6. Multiple units screw jack systems
7. Hand wheel operated, motor driven
100 kN Cubic Screw Jack (10T)
1. Maximum static load capacity 100kN
2. Lifting screw Tr 55×9
3. Gear ratios 9:1, 36:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
150 kN Cubic Screw Jack (15T)
1. Maximum static load capacity 150kN
2. Lifting screw Tr 60×9
3. Gear ratios 9:1, 36:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
200 kN Cubic Screw Jack (20T)
1. Maximum static load capacity 200kN
2. Lifting screw Tr 70×10
3. Gear ratios 10:1, 40:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
250 kN Cubic Screw Jack (25T)
1. Maximum static load capacity 250kN
2. Lifting screw Tr 80×10
3. Gear ratios 10:1, 40:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
350 kN Cubic Screw Jack (35T)
1. Maximum static load capacity 350kN
2. Lifting screw Tr 100×10
3. Gear ratios 10:1, 40:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
500 kN Cubic Screw Jack (50T)
1. Maximum static load capacity 500kN
2. Lifting screw Tr 120×14
3. Gear ratios 14:1, 56:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven

###

1 Ton Machine Screw Jack (1T)
1. Maximum static load capacity 1 ton
2. Lifting screw Tr 24×4
3. Gear ratios 6:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
2.5 Ton Machine Screw Jack (2.5T)
1. Maximum static load capacity 2.5 ton
2. Lifting screw Tr 30×6
3. Gear ratios 6:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
5 Ton Machine Screw Jack (5T)
1. Maximum static load capacity 5 ton
2. Lifting screw Tr 40×7
3. Gear ratios 6:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
10 Ton Machine Screw Jack (10T)
1. Maximum static load capacity 10 ton
2. Lifting screw Tr 58×12
3. Gear ratios 8:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
15 Ton Machine Screw Jack (15T)
1. Maximum static load capacity 15 ton
2. Lifting screw Tr 58×12
3. Gear ratios 8:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
20 Ton Machine Screw Jack (20T)
1. Maximum static load capacity 20 ton
2. Lifting screw Tr 65×12
3. Gear ratios 8:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
25 Ton Machine Screw Jack (25T)
1. Maximum static load capacity 25 ton
2. Lifting screw Tr 90×16
3. Gear ratios 10-2/3:1, 32:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
35 Ton Machine Screw Jack (35T)
1. Maximum static load capacity 35 ton
2. Lifting screw Tr 100×20
3. Gear ratios 10-2/3:1, 32:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
50 Ton Machine Screw Jack (50T)
1. Maximum static load capacity 50 ton
2. Lifting screw Tr 120×20
3. Gear ratios 10-2/3:1, 32:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
100 Ton Machine Screw Jack (100T)
1. Maximum static load capacity 100 ton
2. Lifting screw Tr 160×23
3. Gear ratios 12:1, 36:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
6. Multiple units screw jack systems
7. Hand wheel operated, motor driven
 
US $55-2,555
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Alloy Steel, Bronze Worm Gear
Installation: Upright Type, Inverted Type
Layout: Worm and Worm Screw Right Angle Drive
Gear Shape: Worm Gear
Step: Single-Step

###

Customization:

###

2.5 kN Cubic Mini Screw Jack (0.25T)
1. Maximum static load capacity 2.5kN
2. Lifting screw Tr 14×4
3. Gear ratios 5:1, 20:1
4. Custom made travel length
5. Translating, rotating screw design
6. Multiple mini screw jack systems
7. Hand wheel operated, motor driven

 
5 kN Cubic Small Screw Jack (0.5T)
1. Maximum static load capacity 5kN
2. Lifting screw Tr 18×4
3. Gear ratios 5:1, 20:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
10 kN Cubic Screw Jack (1T)
1. Maximum static load capacity 10kN
2. Lifting screw Tr 20×4
3. Gear ratios 5:1, 20:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
25 kN Cubic Screw Jack (2.5T)
1. Maximum static load capacity 25kN
2. Lifting screw Tr 30×6
3. Gear ratios 6:1, 24:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
6. Multiple units screw jack systems
7. Hand wheel operated, motor driven
50 kN Cubic Screw Jack (5T)
1. Maximum static load capacity 50kN
2. Lifting screw Tr 40×7
3. Gear ratios 7:1, 28:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
6. Multiple units screw jack systems
7. Hand wheel operated, motor driven
100 kN Cubic Screw Jack (10T)
1. Maximum static load capacity 100kN
2. Lifting screw Tr 55×9
3. Gear ratios 9:1, 36:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
150 kN Cubic Screw Jack (15T)
1. Maximum static load capacity 150kN
2. Lifting screw Tr 60×9
3. Gear ratios 9:1, 36:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
200 kN Cubic Screw Jack (20T)
1. Maximum static load capacity 200kN
2. Lifting screw Tr 70×10
3. Gear ratios 10:1, 40:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
250 kN Cubic Screw Jack (25T)
1. Maximum static load capacity 250kN
2. Lifting screw Tr 80×10
3. Gear ratios 10:1, 40:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
350 kN Cubic Screw Jack (35T)
1. Maximum static load capacity 350kN
2. Lifting screw Tr 100×10
3. Gear ratios 10:1, 40:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven
500 kN Cubic Screw Jack (50T)
1. Maximum static load capacity 500kN
2. Lifting screw Tr 120×14
3. Gear ratios 14:1, 56:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
7. Multiple small screw jack systems
8. Hand wheel operated, motor driven

###

1 Ton Machine Screw Jack (1T)
1. Maximum static load capacity 1 ton
2. Lifting screw Tr 24×4
3. Gear ratios 6:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
2.5 Ton Machine Screw Jack (2.5T)
1. Maximum static load capacity 2.5 ton
2. Lifting screw Tr 30×6
3. Gear ratios 6:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
5 Ton Machine Screw Jack (5T)
1. Maximum static load capacity 5 ton
2. Lifting screw Tr 40×7
3. Gear ratios 6:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
10 Ton Machine Screw Jack (10T)
1. Maximum static load capacity 10 ton
2. Lifting screw Tr 58×12
3. Gear ratios 8:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
15 Ton Machine Screw Jack (15T)
1. Maximum static load capacity 15 ton
2. Lifting screw Tr 58×12
3. Gear ratios 8:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
20 Ton Machine Screw Jack (20T)
1. Maximum static load capacity 20 ton
2. Lifting screw Tr 65×12
3. Gear ratios 8:1, 12:1, 24:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
25 Ton Machine Screw Jack (25T)
1. Maximum static load capacity 25 ton
2. Lifting screw Tr 90×16
3. Gear ratios 10-2/3:1, 32:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
35 Ton Machine Screw Jack (35T)
1. Maximum static load capacity 35 ton
2. Lifting screw Tr 100×20
3. Gear ratios 10-2/3:1, 32:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
50 Ton Machine Screw Jack (50T)
1. Maximum static load capacity 50 ton
2. Lifting screw Tr 120×20
3. Gear ratios 10-2/3:1, 32:1
4. Custom made stroke length
5. Translating, rotating screw design
6. Multiple screw jack lift systems
7. Anti-rotation keyed screw design
8. Handwheel, Electric motor operated
100 Ton Machine Screw Jack (100T)
1. Maximum static load capacity 100 ton
2. Lifting screw Tr 160×23
3. Gear ratios 12:1, 36:1
4. Custom made travel length
5. Translating, rotating screw design
6. Anti-rotation keyed screw design
6. Multiple units screw jack systems
7. Hand wheel operated, motor driven
 

Guide to Drive Shafts and U-Joints

If you’re concerned about the performance of your car’s driveshaft, you’re not alone. Many car owners are unaware of the warning signs of a failed driveshaft, but knowing what to look for can help you avoid costly repairs. Here is a brief guide on drive shafts, U-joints and maintenance intervals. Listed below are key points to consider before replacing a vehicle driveshaft.
air-compressor

Symptoms of Driveshaft Failure

Identifying a faulty driveshaft is easy if you’ve ever heard a strange noise from under your car. These sounds are caused by worn U-joints and bearings supporting the drive shaft. When they fail, the drive shafts stop rotating properly, creating a clanking or squeaking sound. When this happens, you may hear noise from the side of the steering wheel or floor.
In addition to noise, a faulty driveshaft can cause your car to swerve in tight corners. It can also lead to suspended bindings that limit overall control. Therefore, you should have these symptoms checked by a mechanic as soon as you notice them. If you notice any of the symptoms above, your next step should be to tow your vehicle to a mechanic. To avoid extra trouble, make sure you’ve taken precautions by checking your car’s oil level.
In addition to these symptoms, you should also look for any noise from the drive shaft. The first thing to look for is the squeak. This was caused by severe damage to the U-joint attached to the drive shaft. In addition to noise, you should also look for rust on the bearing cap seals. In extreme cases, your car can even shudder when accelerating.
Vibration while driving can be an early warning sign of a driveshaft failure. Vibration can be due to worn bushings, stuck sliding yokes, or even springs or bent yokes. Excessive torque can be caused by a worn center bearing or a damaged U-joint. The vehicle may make unusual noises in the chassis system.
If you notice these signs, it’s time to take your car to a mechanic. You should check regularly, especially heavy vehicles. If you’re not sure what’s causing the noise, check your car’s transmission, engine, and rear differential. If you suspect that a driveshaft needs to be replaced, a certified mechanic can replace the driveshaft in your car.
air-compressor

Drive shaft type

Driveshafts are used in many different types of vehicles. These include four-wheel drive, front-engine rear-wheel drive, motorcycles and boats. Each type of drive shaft has its own purpose. Below is an overview of the three most common types of drive shafts:
The driveshaft is a circular, elongated shaft that transmits torque from the engine to the wheels. Drive shafts often contain many joints to compensate for changes in length or angle. Some drive shafts also include connecting shafts and internal constant velocity joints. Some also include torsional dampers, spline joints, and even prismatic joints. The most important thing about the driveshaft is that it plays a vital role in transmitting torque from the engine to the wheels.
The drive shaft needs to be both light and strong to move torque. While steel is the most commonly used material for automotive driveshafts, other materials such as aluminum, composites, and carbon fiber are also commonly used. It all depends on the purpose and size of the vehicle. Precision Manufacturing is a good source for OEM products and OEM driveshafts. So when you’re looking for a new driveshaft, keep these factors in mind when buying.
Cardan joints are another common drive shaft. A universal joint, also known as a U-joint, is a flexible coupling that allows one shaft to drive the other at an angle. This type of drive shaft allows power to be transmitted while the angle of the other shaft is constantly changing. While a gimbal is a good option, it’s not a perfect solution for all applications.
CZPT, Inc. has state-of-the-art machinery to service all types of drive shafts, from small cars to race cars. They serve a variety of needs, including racing, industry and agriculture. Whether you need a new drive shaft or a simple adjustment, the staff at CZPT can meet all your needs. You’ll be back on the road soon!

U-joint

If your car yoke or u-joint shows signs of wear, it’s time to replace them. The easiest way to replace them is to follow the steps below. Use a large flathead screwdriver to test. If you feel any movement, the U-joint is faulty. Also, inspect the bearing caps for damage or rust. If you can’t find the u-joint wrench, try checking with a flashlight.
When inspecting U-joints, make sure they are properly lubricated and lubricated. If the joint is dry or poorly lubricated, it can quickly fail and cause your car to squeak while driving. Another sign that a joint is about to fail is a sudden, excessive whine. Check your u-joints every year or so to make sure they are in proper working order.
Whether your u-joint is sealed or lubricated will depend on the make and model of your vehicle. When your vehicle is off-road, you need to install lubricable U-joints for durability and longevity. A new driveshaft or derailleur will cost more than a U-joint. Also, if you don’t have a good understanding of how to replace them, you may need to do some transmission work on your vehicle.
When replacing the U-joint on the drive shaft, be sure to choose an OEM replacement whenever possible. While you can easily repair or replace the original head, if the u-joint is not lubricated, you may need to replace it. A damaged gimbal joint can cause problems with your car’s transmission or other critical components. Replacing your car’s U-joint early can ensure its long-term performance.
Another option is to use two CV joints on the drive shaft. Using multiple CV joints on the drive shaft helps you in situations where alignment is difficult or operating angles do not match. This type of driveshaft joint is more expensive and complex than a U-joint. The disadvantages of using multiple CV joints are additional length, weight, and reduced operating angle. There are many reasons to use a U-joint on a drive shaft.
air-compressor

maintenance interval

Checking U-joints and slip joints is a critical part of routine maintenance. Most vehicles are equipped with lube fittings on the driveshaft slip joint, which should be checked and lubricated at every oil change. CZPT technicians are well-versed in axles and can easily identify a bad U-joint based on the sound of acceleration or shifting. If not repaired properly, the drive shaft can fall off, requiring expensive repairs.
Oil filters and oil changes are other parts of a vehicle’s mechanical system. To prevent rust, the oil in these parts must be replaced. The same goes for transmission. Your vehicle’s driveshaft should be inspected at least every 60,000 miles. The vehicle’s transmission and clutch should also be checked for wear. Other components that should be checked include PCV valves, oil lines and connections, spark plugs, tire bearings, steering gearboxes and brakes.
If your vehicle has a manual transmission, it is best to have it serviced by CZPT’s East Lexington experts. These services should be performed every two to four years or every 24,000 miles. For best results, refer to the owner’s manual for recommended maintenance intervals. CZPT technicians are experienced in axles and differentials. Regular maintenance of your drivetrain will keep it in good working order.

China Best Worm Gear Machine Screw Linear Actuators, Mechanical Screw Actuators Lifting Shaft Manufacturer     drive shaft parts	China Best Worm Gear Machine Screw Linear Actuators, Mechanical Screw Actuators Lifting Shaft Manufacturer     drive shaft parts
editor by czh 2022-12-25